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POLARON DYNAMICS ON THE LATTICE WITH CUBIC
NONLINEARITY. ACCURATE SOLUTION
AND MULTIPEAKED POLARONS

Abstract.

Background. The feasible mechanism of charge transfer in quasi-one-dimensional
systems is examined. Special interest to this problem emerged after the experimental
discovery that the charge can travel dozens nanometers through the DNA chain with
very high efficiency. It was found additionally that the charge transfer probability
weakly depends on the lattice length and, moreover, occurs as a single-step coherent
process. These properties open the possibilities for the usage of these and analogous
systems as nanosized electroactive devices. The primary goal of the present paper is
the theoretical and numerical feasibility study of the charge transfer in one-
dimensional systems, representing the simplified DNA model, by means of polarons.

Materials and methods. The discrete model of one-dimensional classical oscilla-
tors with the cubic nonlinearity is utilized for the studying the problem, aimed at the
elucidating the polaron mechanism of the charge transfer. The electron-phonon in-
teraction is accounted in terms of the Su-Schriffer-Heeger (SSH) approximation.
The referenced discrete model is reduced to two coupled nonlinear partial differen-
tial equations. One describes classical dynamical degrees of freedom. The other is
the time-dependent Schrodinger equation for the electron wave function. The soli-
ton-type solutions are derived at the definite relation between the model parameters
(nonlinearity parameter a and the electron-phonon interaction y). The numerical
modeling shows the very high stability (polarons travel thousandth lattice sites
without substantial changes in shape and amplitude). New polaron types with the
envelope consisting of few (from 2 to 5) peaks are found in numerical simulation at
larger parameter values. These properties are manifested for supersonic polarons
with large amplitudes. The peaks existence is explained by the fact that the dynami-
cally polaron is comprised by few solitons held together by the electron-phonon in-
teraction. Multipeaked polarons are also very stable.

Results. The polaronic charge transfer mechanism is analyzed. The one-
dimensional lattice model is used. The employed model describes the lattice dynam-
ics classically. An accounting of the cubic nonlinearity in the neighboring particles
interaction, allows to make the model more adequate with regard to original com-
plex biological systems. Additionally, new qualitative properties are revealed. One
is the existence of solitons and the role they are playing in the charge transfer. The
wave function is reported in the adiabatic approximation, and the electron-phonon
interaction is accounted in terms of the SSH approximation. Analytical solutions are
derived for polarons on the nonlinear lattice. The solution shape (amplitude, width)
is soliton-like and is governed by a single free parameter. Stable polarons with the
envelope consisting of few peaks are found in numerical modelling.

Conclusions. It has been established that polarons on the lattice with the cubic
nonlinearity are very stable and can participate in the charge and energy transfer in
DNA and polypeptides. New types of multypeaked polarons are found. The dynam-
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ics is interpreted as the coupled state of few solitons hold together by the ekectron-
phonon interaction.

Key words: quasi-one-dimensional systems, charge transfer, polarons, DNA
chain, one-dimensional lattice model.
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JTUHAMMKA IOJISIPOHOB HA PEIIETKE
C KYBUUYECKOM HEJIUMHEMHOCTBIO.
TOYHOE PEIIEHUE 1 MHOT'OITUKOBBIE MMOJISIPOHBI

AHHOTAIMSA.

Axmyanvnocmo u yenu. ViccnenoBaH BO3MOXKHBIN MEXaHM3M IEepeHoca 3apsaia
B KBa3MOJOMEpHBIX cructeMax. OcoOyio akTyaJbHOCTB 3TOT BOIPOC MPUOOpEN mocie
TOT0, KaK 9KCIIEPHMEHTAIBHO OBUIO MOKAa3aHO, YTO HOCUTEINb 3aps/a C OY€Hb BBICOKOH
3P PEKTUBHOCTHIO MOXKET NPOXOIUTH PACCTOSHUE B HECKOJIBKO JECSTKOB HM IO Iie-
i JIHK. TIpu 5TOM BeposITHOCTH TIepeHoca 3apsiaa OueHb ¢I1a00 3aBUCHT OT JJTHHBI
LIETTH, & CaM TIEPEHOC OCYIIECTBISICTCS KAK OJHOCTaJUHHBIA KOT€PEHTHBIA MpOIEcC.
DTN CBOWCTBA OTKPBIBAIOT BO3MOKHOCTH [UISI MCIIOJIb30BAHHSA 3THUX M MOAOOHBIX CO-
€IMHEHUI B Ka4eCTBE HAHOPA3MEPHBIX AEKTPOAKTHBHBIX ycTpoicTB. Llenbio HacTo-
el paboTHI SABISIETCS TEOPETHUECKOE M YMCIEHHOE N3YYEHHUE TIepeHoca 3apsija I1o-
CPEICTBOM IOJISIPOHOB B OJTHOMEPHBIX CHCTEMax, Mojenupyrommx uens JHK.

Mamepuanst u memooul. [I51s pelieHns 3a1a4qy O MOJSIPOHHOM MEXaHU3MeE Iepe-
HOCa 3apsAa B OJHOMEPHBIX CHCTEMax, MMEIOLUX PEryJIipHOEe CTPOEHHE, UCIIONb-
30BaHa KJIaCCHUYECKas MOJICNIb HEIMHEHHBIX OCHMUIATOPOB C KyOMUeCKOH HeIHHEeH-
HOCTBI0. DIEKTPOH-()OHOHHOE B3aUMO/ICHCTBUE YUUTHIBACTCS B PaMKax MpPUOIIKe-
Hus Cy-Ilpuddepa-Xurepa (CILIX). McxomHast nuckpeTrHas MOAETs B KOHTHHY-
aJLHOM TIpesieNie CBeJeHa K JIBYM CBSI3aHHBIM MEXAy co00l HelWHEeHHBIM ypaBHE-
HUSIM B YaCTHBIX MPOU3BOAHBIX. OIHO U3 HUX OMUCHIBAET KJIACCUUYECKUE TUHAMUYE-
CKHE CTEIIeHH CBOOOMBI, a BTOpoe ecTh ypaBHeHue lllpenuHrepa Ha BOJIHOBYIO
¢byHKIuo 3mexTpoHa. Ilpu onpeneneHHOM COOTHOLIEHHN MEXIy IapaMeTpaMu Mo-
Jenu (mapaMerp HEJMHEHHOCTH MOTEHIMala ¢ ¥ IapaMeTp 3JIEKTPOH-(OHOHHOTO
B3aUMOJICHCTBUS ) MOJYYEHO aHAIMTUYECKOE PEICHHE COJIMTOHHOrO THma. B umc-
JICHHOM MOJEIHMPOBAHNY TTOKa3aHa BBICOKAS YCTOMYMBOCTH IOJIyYCHHBIX PELICHUH
(TONISAPOHBI MPOXOAST IO LEMH HECKOJIBKO THICSY MOCTOSHHBIX PEIIETKH 0e3 M3Me-
HeHusi cBoer (opMbl U aMILIUTYAbI). [Ipr OONBIIMX 3HAUYEHMSX MApaMETPOB O U
oOHapy»XeHbl HOBBIC THIIBI IOJIIPOHOB, Y KOTOPBIX Orubaromias He TiajKas, a co-
CTOHMT W3 HECKOJNBKUX (OT JIBYX IO MATH) MHUKOB. DTH CBOMCTBA MPOSBISIOTCS JUIS
MOJISIPOHOB ¢ OOJBIION aMITUTYAOH U CKOPOCTBIO IPEBHIIIAIONIEH CKOPOCTH 3BYKA.
Hannuue nukoB 06’])HCH6HO TEM, YTO NOJIAPOH 06p33013aH HCCKOJIbBKUMHU COJIMTOHAMMH,
CBSI3aHHBIMH MEXLy COOOH 3JIeKTPOH-(POHOHHBIM B3aUMOJICHCTBUEM. DTH TOJSIPOHBI
TaKX€ OYeHb YCTOWYMBEI, YTO TOATBEPKICHO YHCICHHBIM MOJEITHPOBAHUEM.

Pesynomamei. ViccienoBan MEXaHU3M NEpPEHOCA 3apsia ¢ IOMOIIBIO MOISPOHOB.
Hcnonp3zoBaHa ofHOMEpHAasl pelleToyHas Mozenb. Mcronab3oBaHHAs MOJENb OIH-
CBIBACT JMHAMHKY PELIETKH B KJIACCHYECKOM NPUOMIKEHNH. YUeT KyOndecKoil He-
JMHEHHOCTH B TOTEHNWAJC B3aUMOJCHCTBUS COCETHHMX YacTHI] MO3BOJISET, BO-
MIEPBHIX, CAETATh MOJIENb OoJiee aleKBaTHON aHATH3UPYEMOH (PH3MUECKON CUCTEME;
BO-BTOPBIX, MPUBOJUT K BBIABJICHUIO HOBBIX KaUCCTBCHHBIX CBOICTB. O]IHO n3 Ta-
KHX CBOMCTB — CYLIECTBOBAaHHE COJUTOHOB U UX POJb B TPAHCHOPTE 3apsaa. BomHo-
Bas (D)YHKIMS 3JIEKTPOHA OIHCHIBACTCS B aAnabaTHYECKOM NPHOJIMKCHNUH, a 3JEK-
TpOH-(OHOHHOE B3anMo/ieiicTBHe yunTheiBaeTcs B mpuommkenun CLIX. ITomryuenst
AHAJIUTUYECKUE PELLEHUs JUlsl IOJSIPOHOB HAa HEJMHEHHOW peuieTke. Buj stux pe-
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meHnit (popma, aMIDIATY 1A, CKOPOCTH) COMUTOHOOTOOHBIN U OMPEACISCTCS CIIH-
CTBEHHBIM CBOOOJHBIM MapamMeTpoM. B 4HCIEHHOM MOJETHPOBAaHUU OOHAPYKEHBI
YCTOWYHBBIE TIOJIIPOHBI, OrHOAroIast KOTOPBIX UMEET HECKOJIBKO ITHUKOB.

Bui6oowi. T1okazaHo, 4TO MOJISIPOHBI HA PEUIETKE ¢ KyOMUEeCKOi HEIMHEHHOCTHIO
OYCHb YCTOWYMBHI M MOTYT MEPEHOCUTH 3apsa u sHepruto B IHK n momumentunax.
OOHapyXeH HOBBIM THUI MHOTOITMKOBBIX MOJSIPOHOB. VX MUHaMHKa ompenensercs
COJIUTOHAMH, & CAMH COJIUTOHBI YJIEP)KUBAIOTCS B CBA3aHHOM COCTOSIHUH JJIEKTPOH-
(hOHOHHBIM B3aMMOJICHCTBHEM.

KnioueBble cioBa: KBa3noJOMEpHBIE CHCTEMBI, IEPEHOC 3apsiaa, MOJSPOHBI,
uens AHK, oqHOMepHas peuieToyHasi MOJEINb.

Introduction

The Su — Schrieffer — Heeger (SSH) approximation aimed at the accounting
the electron-phonon interaction is know since 1979-1980 [1, 2]. This
approximation was initially applied to polyacetylene (PA) to describe the soliton-
like (kink) excitations. Charge-density waves were found in the continuum version
of PA [3]. The solution was obtained in the form of hyperbolic tangent kink order-
parameter profile. Based on the same principles, the new solutions were found
which were conventional strong-coupling polarons with spin 1/2 and charge e in
the dimerized PA chain [4]. Though PA is rather special system being
multielectron system with the dimerized ground state, the SSH model came into
play in further investigations of low-dimensional molecular systems.

Polarons as “self-trapped” charge carriers can explain many effects
associated with the charge transport in nonmetallic materials. Special interest arose
after the effective charge transport over long distances (tenth nanometers) was
discovered in synthetic DNA and polypeptides [5—12] (see also reviews [5, 13—
15]). E. Conwell with colleagues was the first who applied the SSH approximation
in an attempts to describe the charge transfer in DNA [16, 17] using the polaron
paradigm. This line of research was further extensively studied [18-23].

Obtaining the analytical solution for polarons is of primary interest as it
allows to make qualitative and quantitative assessments of different properties.
Polaron solutions on the harmonic lattice in the SSH approximation were found
recently [24-26]. The solution has the hyperbolic secants form typical for the
soliton solution.

In the present paper the analytical solution for polarons on the anharmonic
lattice is derived at special relation between parameters of lattice nonlinearity o
and electron-phonon interaction 7y . The solution is obtained in the continuum

approximation for the large radius polaron. As the polaron radius is inversely
proportional to the parameter ¥ , the continuum approximation implies that both

parameters y and o should be small. At larger parameters values and velocities

acceding the sound velocity, a new family of multipeaked polarons is found in
numerical modelling.

1. Exact solution in the continuum approximation
1.1. Theoretical model

We consider a lattice model of a molecular system (e.g. DNA duplex stack)
consisting of N particles with free ends. A “particle” can represent a DNA base.
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The hamiltonian consists of two contributions. One is classical lattice hamiltonian

Hy,, and next accounts for the electron--phonon interaction H, :

H = Hig + Hep,, (1)

where the lattice hamiltonian reads
m N ) k N-1 , « N-1 3
Hlazzzzxj +52(xj+l_xj) _?Z(xj-kl_xj) (2)
j=1 j=1 j=1

and m,k, and o are mass of the particle, lattice rigidity and nonlinearity

parameter, correspondingly; x;
equilibrium. The choice of this potential is explained by the fact that it represents
the series expansion up to the third order of such potentials as Toda, Morse,
Lennard-Jones and others.

The electron-phonon interaction is

is the deviation of ith particle from the

x| A
Hepy =< ¥ [Hpp| ¥ > 3)
where H eph in the matrix representation reads
el tl 0 . 0 0
[1 62 [2 . 0 O
0 Zz 83 ee 0 0
Heph: 4)
0 0 0 e eN_l tN—l
0 0 0 ee tN—l eN

and the wave function ¥ is the N — vector: W=y, y,,....yy. Hepy, is the

symmetrical tridiagonal matrix. On-site energies e i stand on the main diagonal,

and hopping integrals ¢ ; — on secondary diagonals. Hopping integrals are

expressed through the linear deviation of relative displacements from the
equilibrium and are written in the SSH approximation:

to 1s the hopping integral at equilibrium and ) — parameter of electron-phonon

interaction. If the lattice is comprised by equal particles then all on-site energies e;

are also equal and without loss of generality they can be put to zero, what defines
the electron energy point of reference.

It is convenient to make the variables dimensionless. Three independent
parameters, — mass m , rigidity coefficient £ and energy #; in (1) and (5) are put

numerically to unity. Then units of time and length can be made dimensionless:
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[t]=\/mk_1 and [L]= tok_1 . Parameter o is also dimensionless:
o —> o/ Jkty . If specific parameters values are chosen, e.g., m=130 a.m.u.,

k=0.85 eVA ™2 and to =0.3 eV for DNA [18, 19, 22, 27], then the time unit is
[t]=0.13 ps, and the length is measured in [L]=0.59 A. The dimensionless values
of other parameters for DNA: a=1.2 and y=1.1. The same notations are
preserved below for the dimensionless variables.

Other parameter values ¢, and y in the SSH approximation are also used
[28, 29], but the particular choice of numerical values does not significantly
influence the final results. Two dimensionless equations in variables x; and W ;i

J
are obtained from (1)—(5):
XJ :(xj—l —ZXj +Xj+1)+(X|:(Xj —Xj_l)z —(Xj+1 —Xj)2:|+

+x[(w’}_1w IR c‘c} :

. I

V; =—%{[1—x(xj =X O g+ =241 = %)W 1} (6)
where the first equation is the Newtonian equation of motion, and the second --
time-dependent Schrédinger equation. 7 is the dimensionless Planck's constant.
It is more convenient to use variables ¢ ; = (x;;; —x;) . Then system (6) transforms to

.. 2 2
4;=qj11=29;+q;-1=00(q;51—9;)" = (q; —q;-1)" ]~

_X[(Wjﬂ‘l’ﬁz - 2W;Wj+1 + \Vj'—l\lfj) + C-C-}, (7)

, i
; =—%|:(1_qu')\|!j+l +(1‘qu—1)"’]—1]'

1.2. The continuum approximation

A general way of obtaining the solution of discrete equations like (7) is the
usage of the continuum approximation. In the continuum approximation discrete
variables are expanded into series:

2 a 3 4 24

a r” V444 a
=g+ PRV = +
qjm =qragy+—rq g e g

2
’ a ’”
Vi =Y Eay TR t... (8)

where superscripts mean spatial derivatives of the corresponding orders and a is a
dimensionless parameter of expansion (usually a=1). After the substitution of
expansions (8) into (7) a system of partial differential equations (PDEs) is
obtained:
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e = (Qxx +%QxxxxJ_a(q2 )xx +2X(WW*) >

v, =—%[2(1 XDV + Y |- 9)

1.3. Exactly integrable system and its solution

The PDEs system (9) does not belong to the class of exactly integrable
equations and has no exact solution. But there exists the exactly integrable
Zakharov —Shabat system [30]:

?’Ztt = (Zxxx _6zzx)x +8 | Y |)26x=
i(pt = (pxx —zQ, (10)

having multisoliton solutions. If a=2x in (9) (coefficients before spatial

derivatives in the RHS are equal) then after simple variable substitutions this
system coincides with (10). And the one-soliton solution is [30]:

A
cosh’[d (x— Vvph)] ’

q(x,0) =~

_ Bexpli(kx + wt)]
cosh[d(x — vpt)] ’

y(x,1) (11)

where the polaron width 1/d and its velocity v, are not yet defined; 4 and B are

amplitudes of relative displacements and the wave function, correspondingly;
(kx+t) is the wave function phase. x should be substituted by the discrete
variable j for the solution on the lattice.

The substitution of (11) into (9) allows to find the relation between all
parameters. The solution is one-parameteric. If the amplitude A is chosen as a free
parameter, then all other parameters are expressed through 4 :

d=~od=2y4d, B=d/2, (12)

with the velocity

1/2
3
vy = p2od_ e ped 1 (13)
3 A 3 2\ 4
and the phase:
k=hv, /2<1; ©=Q+d*—k*)/h>1 (14)

(typically the dimensionless Planck's constant 7~10"2 with the chosen
dimensionless parameters. The small value of h imposes the different time scales

for specific dynamical and quantum times: the quantum time in (9) is ~ 107 times
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smaller then the dynamical time. This fact should be taken into account in the join
integration of system (7)).

The polaron velocity v, varies in a wide range 0<v, <1.2 (the upper
velocity limit is defined by the lattice discreteness: the polaron becomes too narrow
and its width w=1/d is comparable to the lattice period when the velocity
exceeding the sound velocity vg,; =1).

Note that if the electron-phonon interaction is absent, i.e. =0, then g(x,?)
in (11) is nothing else then soliton and its velocity (13) coincides with the velocity
of soliton on the o -FPU lattice [31]. But if the lattice is harmonic, i.e. a0=0 then

the polaron velocity coincides with the velocity on the harmonic lattice [24, 26].
Thus, the expression for the polaron velocity is correct in two limiting cases.

1.4. Numerical test of polaron stability

The solution (11) with parameters (12), (13) is checked in numerical
simulation. Fig. 1 shows the dependence of polaron velocity vs. its amplitude. The
coincidence between the expression for the velocity (13) and numerical modelling
is very good.

1.0
>

0.8 -

0.6 -

0.4 -

0.2 -

0.0 - . . . :

0.0 0.2 0.4 0.6 0.8 A 1.0

Fig. 1. (Color online) Dependence of the polaron velocity v vs. amplitude A .
Solid line — formula (13) in the continuum approximation; filled circles —
numerical integration of discrete equations (7)

Next figures shows the collision of polarons. Initial conditions are chosen
according to (12)—(14) with parameters 4 =0.2 and 4=0.1 for polarons ‘X’ and
‘Z’, correspondingly (Fig. 2).

This numerical experiment has no physical meaning as it does not take into
account the Coulomb interaction. Its primary goal is the demonstration of high
polaron stability and the accuracy of the solution. Traditionally, the elastic soliton
collision in the soliton theory is believed to be the direct evidence of: i) soliton
stability, and #i) that the solution belongs to the exactly integrable system.

2. Polarons at arbitrary parameters values: multipeaked polarons

The exact solution (11) is valid only if the relation o =2y is valid and both
parameters are small. In the general case these limitations are not fulfilled.
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9
Fig. 2. (Color online) Collision of two of polarons: & — at time moment ¢ =0
polarons are centered at sites j(jY =56 and jOZ =128. The initial velocity of the left

polaron X’ is larger than the velocity of the right polaron ‘Z’; b — polarons collision
at =200 ; ¢ — polarons after the collision at =400 : polaron ‘X’ overruns more
slower polaron ‘Z’. Positive values along the Y-axis — modulus of the wave
function, negative -- relative displacements. Lattice with N =500
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For instance, the dimensionless parameters for DNA are a=1.1 and
% =1.2. Do polarons exist and are they stable at arbitrary parameters values? As
the analytical solution is absent in this case, the numerical modelling is the only
way to check this possibility. The parameter values a=1.0 and =04 are
chosen for the more detailed analysis for definiteness. The results differ
unessentially at other values of o and 7 .

2.1. Standing and subsonic polarons

The exact solution at arbitrary parameters is unknown and the search of the
solution is as follows. Initial conditions for the relative displacements are chosen

according to (11). Initial amplitude AO, velocity vg and the width parameter d 0

are arbitrary. The wave function is the eigenfunction of the matrix (4) with
obtained values of hopping integrals 7; =, —Xg . It is hoped that if polaron does

exist then it should self-organize from these initial conditions.

As a rule, these trial initial conditions are not the accurate solution, and it
emits a “noise” which does not satisfy the conditions of the true solution.
Gradually the polaron refines from all odds and acquires a stable shape and
velocity.

The standing polaron obtained using this line is shown in Fig. 3.

0.30

0.25 1

0.20 1

£ 015 |

0.10 1

0.05 1

0.00 . r T . r T T

20 15 -10 -5 0 5 10 15 20
J

Fig. 3. (Color online) Calculated (circles) and fitting (solid line)

for the wave function modulus. Parameters: oo=1.0, ¥ =0.4

The relative displacements and the modulus of the wave function are
approximated by the fitting

A B
4j=———— W F—o—— (15)
/ cosh?(d j) / cosh"(d j)
and 4=0.055, B=0.271, v=1.23 and d =0.129. An existence of the fractional
degree v is not unusual. The best known analogy is the solution of the stationary

Schrédinger equation with the potential U (x)=—Csech2 (Dx) . The solution has
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the general form y(x)= Bcosh"(bx). The exponent v depends on values C and
D in the potential U(x) and can be fractional.

For what concerns the phase of the wave function, it depends on time
oc exp(—iEpt/ii) and is constant in the region where the polaron is located. The
dependence of the wave function moduli on different sites j at different time
instants is shown in Fig. 4.

0.4 1 /f
S.}\
¥ 02 —— t
= —— b
00 s
. T t4
-0.2 A
04 -

-04 -0.2 0.0 0.2
Re(y)

Fig. 4. (Color online) Real and imaginary parts of the wave function at different instants
of time. Symbols correspond to different values of the wave function on different lattice
site j (straight lines are shown to guide the eye). The time interval between consequent

directions of the wave functions At=1, — ) =13 1, =...=t5—1, =6 107,

The wave function rotates anticlockwise. The total period of rotation 7 =3.6- 1072

Straight lines tan @ =Im(y ;)/Re(y J-) ( j < polaron) at different instants of
time demonstrate the constant values of the wave function phase ¢. These data
allow to find the contribution E,, determined by the electron-phonon interaction to

the total polaron energy.

Polaron preserves its one-humped form up to velocity v, < vg,g =1.

Subsonic polarons are very stable. They travel thousands lattice sites without
noticeable changes in energy, shapes and velocity. Just as in the case with
“analytical” polarons, “non-analytical” subsonic polarons with o=1.0 and
x = 0.4 collides elastically. These issue can imply that there exists a stable solution

which belongs to the (yet unknown) exactly integrable system.
2.2. Supersonic multipeaked polarons

When the polaron velocity exceeds the sound velocity, new polaron shapes
with the envelope consisting of few peaks emerge. The modelling is done as
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follows: initial conditions for the relative displacements are chosen according to

(11). As the relation between polaron parameters Ao,vg and d° is unknown, two

of them (vg and d 0) are fixed. These values are chosen arbitrarily:
d = O.I,VS =0.7 . The single variable parameter is the initial amplitude A°. The

initial wave function ¥ is the eigenfunction of matrix (4) with the hopping
integrals obtained from relative displacements ¢(j,#=0) (11).

As an example, the intermediate stage of the four-peaked polaron formation

is shown in Fig. 5 at A4°=0.6. Few features of newly formed polaron should be
outlined: 1) the polaron is identified by the 100% localized wave function. It self-
organizes, increases the velocity up to stable v, =1.14; 2) relative displacements

form an envelope consisting of four peaks; 3) the polaron is accompanied by at
least five solitons arranged in the right order (the straight line in Fig. 4 shows the
linear relation between the velocities and amplitudes specific to solitons). The
polaron velocity lies between velocities of solitons S} and §,.

0.4
0.2
0.0 et 7% 7
0.2 -

04

-0.6 ~

800 820 840 860 880 900 920 940 960 980
!
Fig. 5. (Color online) The result of the evolution of the initial excitation (see text)
at ¢ =800. The formed four-peaked polaron is indicated by two horizontal arrows

for clarity. There are also five solitons labelled by S, ..., S 5. Front edge of the sound

propagation is shown by the vertical arrow. The steady state polaron velocity v, = 1.14

increased relative to the initial value vg = 0.7 . positive values — the wave

function, negative — relative displacements

When the initial polaron amplitude A° changes, the number of peaks varies.
Four examples for stable polarons with two, three, four and five peaks are shown in
Fig. 6.

Number of peaks correlates with the steady polaron velocity. It is interesting
to note that the change of peaks number looks like bifurcation — small variance of
velocity results in dramatic change of peaks number (Fig. 7).
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Fig. 6. (Color online) Polarons with two, three,
four and five peaks. Snapshots are shown at ¢ =900
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Fig. 7. (Color online) Polarons half-width w vs. steady velocities v .
Numbers indicate number of peaks. Horizontal lines show that the polaron
widths and numbers of peaks are constant at some intervals of velocities

Multipeaked polarons were tested in collisions (Fig. 8). The collision is
inelastic in contrast to the elastic collision of “analytical” polarons.

0.4 ;

750 800 j 850

Fig. 8. (Color online) Inelastic collision of two multipeaked polarons.
Left panel: initial positions of polarons. The left three—peaked polaron has velocity
larger then the right four-peaked polaron. Right panel: three-peaked and two-peaked
polarons with two solitons in between after the collision at ¢ =700
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An existence of peaks is of special interest. Evidently that the found
multipeaked polarons do not belong to the well known polarobreathers (PBs) [32,
33] as the wave function is 100 % concentrated on polarons in contrast to PBs
where the wave function is splitted between individual peaks.

The results presented in Fig. 8 can help in elucidating the peaks nature.
Indeed, there are seven peaks in total before collision (three-peaked polaron
collides with the four-peaked polaron). Seven “peaks” are also observed after the
collision. Five peaks belong to polarons (three peaked plus two--peaked polarons).
And two “peaks” are nothing else but solitons. Thus one can suspect that the
multipeaked polaron might be comprised by solitons hold tightly by the electro-
phonon interaction.

The following numerical experiment is performed to check this possibility.
The KdV equation, which is the continuum approximation of the lattice with cubic
nonlinearity, has the two-soliton solution. The solution for the relative
displacements of two closely spaced polarons reads

q(x,t)=1+expO; +exp0, +(a1 ) Jexp(@l +0,), (16)
a +Clz

(where 0; = al-x—a?t,(i =1,2) and a; =3.0,a, =2.95. The wave function is the
eigenfunction of the matrix (4) with the hopping integrals employing relative
displacements (16). After quick self-organization of this initial condition, the two-
peaked polaron is formed (Fig. 9). It looks very much like the earlier found two-
peaked polaron (Fig. 6).

Analogously, if three or four closely located solitons are “dressed up” by the
wave function, the polaron is formed with the corresponding number of peaks. On
contrary, if the polaron is “dressed down”, i.e. the wave function is put to zero for a
multipeaked polaron at any time instant, it decays into solitons. The number of
solitons coincides with the number of peaks.

Conclusions

In conclusions we briefly summarize the main results. The detailed analysis
is done for the polaron dynamics on the lattice with the cubic nonlinearity. The
exact solution is obtained for the first time for large radius polarons when
parameters of nonlinearity o and electron-phonon interaction 7y are small, and

comply with the requirements o= 2y . The numerical modelling supports the high

polaron stability. The elastic polaron collision (without considering the Coulomb
interaction) is a strong evidence that the solution belongs to the class of exactly
integrable systems. If the relation o=2y is not valid, but both parameters are

small, subsonic polarons are also very stable and collides elastically. This issue can
point to the possibility that the solution also belongs to the (yet unknown) class of
integrability.

When parameters oo and % become large (e.g. typical for DNA), new types
of polarons is found. The envelope consists of few (up to five) peaks. The thorough
analysis is done for the particular case when oo =1.0 and y = 0.4 . The multipeaked

polaron are comprised of few solitons hold tightly together by the electron-phonon
interaction.
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Fig. 9. (Color online) Formation of two-peaked polaron. Left panel:
initial condition — two-closely located solitons are “dressed up” by the wave function.
Right panel: snapshot of the initial condition evolution at ¢ =1000

The obtained results are valid in the wide range of parameters values.
Necessary condition should be met that the electron-phonon interaction should be
able to confine solitons together in the common potential well.

The most relevant investigations were done by M. Velarde with colleagues
[34, 35]. They found the bounded state of soliton and electron, named solectron.
But in contrast to our results, solectron has constant supersonic velocity coinciding
with the velocity of a bare soliton.
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